
Master’s Programme in Industrial Engineering and Management

MatsuLM - neural network
language modeling toolkit
Python implementation of a neural network language modeling toolkit

Riko Nyberg

MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2020

MatsuLM - neural network language
modeling toolkit

Python implementation of a
neural network language modeling toolkit

Riko Nyberg

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.
Otaniemi, 31 July 2020

Supervisor: professor Mikko Kurimo
Advisor: postdoctoral researcher Mittul Singh

Aalto University
School of Science
Master’s Programme in Industrial Engineering and
Management

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Riko Nyberg

Title
MatsuLM - Python implementation of a neural network language modeling toolkit

School School of Science

Master’s programme Industrial Engineering and Management

Major Leadership and Knowledge Management Code SCI3048

Minor Analytics and Data Science Code SCI3073

Supervisor professor Mikko Kurimo

Advisor postdoctoral researcher Mittul Singh

Level Master’s Date 31st of July 2020 Pages 48 + 6 Language English

Abstract
Language models (LMs) give a probability of how likely a sequence of words might

appear in a particular order in a sentence, and they are an essential part of automatic
speech recognition (ASR) and natural language processing (NLP) systems. These systems
have improved at a considerable pace over the past decade. Similarly, language models
have significantly advanced after the invention of recurrent neural network language
models (RNNLMs) in 2010. These RNNLMs are generally called neural network language
models (NNLMs) and they have become the state-of-the-art language models because of
their superior performance compared to N-gram models.

This thesis is creating a new NNLM toolkit, called MatsuLM, that is using the latest
machine learning frameworks and industry standards. Hence, it is faster and easier to
use and set up than the existing NNLM tools. Currently, there are very few open-source
toolkits for NNLMs; however, these toolkits have both become outdated and are no longer
supported, or they suffer from functionality issues.

This work introduces a new NNLM toolkit, called MatsuLM, that includes all the
essential components to create and monitor NNLM development effortlessly. This toolkit
is built to be as lightweight and straightforward as possible to decrease development effort
in the future.

MatsuLM’s performance is compared against two existing NNLM toolkits (TheanoLM
and awd-lstm-lm). In the experiments conducted during this thesis, both existing toolkits
were slower than the newly presented MatsuLM in training the language models. Conse-
quently, MatsuLM is currently the fastest and most up to date NNLM toolkit compared to
TheanoLM and awd-lstm-lm.

Keywords neural networks, language modeling, machine learning, deep learning,
pytorch, LSTM

url https://riko.io/matsulm.pdf

ii

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Riko Nyberg

Työn nimi
MatsuLM - Python implementation of a neural network language modeling toolkit

Korkeakoulu Perustieteiden korkeakoulu

Master’s programme Industrial Engineering and Management

Major Leadership and Knowledge Management Code SCI3048

Minor Analytics and Data Science Code SCI3073

Valvoja professori Mikko Kurimo

Ohjaaja tutkijatohtori Mittul Singh

Työn laji Diplomityö Päiväys 31.07.2020 Sivuja 48 + 6 Kieli englanti

Tiivistelmä
Kielimallit (LM) antavat arvion siitä, kuinka todennäköisesti sanasarja saattaa esiintyä

lauseessa. LM on olennainen osa automaattista puheentunnistus- (ASR) ja luonnollisen
kielenkäsittelyn- (NLP) järjestelmiä. ASR ja NLP järjestelmät ovat parantuneet huomat-
tavalla vauhdilla viimeisen vuosikymmenen aikana. Samoin kielimallit ovat kehittyneet
huomattavasti sen jälkeen kun ensimmäiset rekursiivisien neuroverkkojen kielimallit
(RNNLM) kehitettiin vuonna 2010. Näitä RNNLM-malleja kutsutaan yleensä neuro-
verkkokielimalleiksi (NNLM) ja niistä on tullut alan huipputeknologiaa erinomaisen
suorituskykynsä vuoksi.

Tämä opinnäytetyö esittelee uuden NNLM-työkalun, nimeltään MatsuLM, joka käyt-
tää uusimpia koneoppimisstandardeja sekä -komponentteja. MatsuLM on nopeampi ja
helpompi käyttää ja asentaa kuin nykyiset NNLM-työkalut, sen modernin koneoppi-
misstandardisoinnin vuoksi. MatsuLM sisältää kaikki tärkeät komponentit vaivatonta
NNLM-kehitykstä varten. MatsuLM työkalu on rakennettu avoimella lähdekoodilla ole-
maan mahdollisimman kevyt ja helppokäyttöinen, jotta sen avulla voidaan vähentää
NNLM-kehityksen työläyttä tulevaisuudessa.

Motivaatio MatsuLM:n kehitykseen syntyi NNLM-kehitykseen tarkoitettujen avoimella
lähdekoodilla tehtyjen työkalujen puutteesta. Lisäksi olemassaolevat avoimen lähdekoo-
din NNLM-työkalun kärsivät puutteellisesta toiminnallisuudesta, koska ne ovat vanhen-
tuneita, eikä niitä enää tueta tai ne ovat vielä varhaisessa kehitysvaiheessa, eivätkä siksi
ole luotettavia.

MatsuLM:n suorituskykyä verrataan kahteen muuhun olemassa olevaan NNLM-työkaluun
(TheanoLM ja awd-lstm-lm). Opinnäytetyön aikana suoritetuissa kokeissa molemmat
vertailussa käytetyt NNLM-työkalut olivat hitaampia, kuin MatsuLM NNLM-mallien
koulutuksessa. Näin ollen MatsuLM on nopein ja pävitetyin NNLM-työkalu verrattuna
TheanoLM:ään sekä awd-lstm-lm:iin.

Avainsanat neuroverkot, kielimallinnus, koneoppiminen, syväoppiminen, pytorch,
LSTM

url https://riko.io/matsulm.pdf

iii

Contents

Abstract ii

Tiivistelmä iii

Contents iv

Abbreviations vi

1. Introduction 1

1.1 Motivation . 2

1.2 Objectives and research question 3

1.3 Outline of the thesis . 3

2. Language models 5

2.1 Need for language models 5

2.1.1 Accelerating communication 6

2.1.2 Human-computer interaction 6

2.2 Classic language models . 7

2.2.1 Statistical Language Modeling 8

2.2.2 N-Gram Models 9

3. Neural Network Language Modeling 12

3.1 Artificial and Biological Neurons 13

3.2 Feedforward neural networks 15

3.3 Recurrent Neural Networks 17

3.3.1 Limitations . 19

3.4 Long Short-Term Memory (LSTM) 20

3.4.1 LSTM structure 21

3.5 Evaluating Language Models 26

3.5.1 Perplexity . 28

iv

Contents

3.6 Lexical unit selection for NNLM 29

3.6.1 Word-based models 29

3.6.2 Sub-word based models 30

3.6.3 Character-based models 30

4. MatsuLM 32

4.1 Toolkit description . 33

4.2 Adding new functionalities 36

5. Experimental setup 37

5.1 TheanoLM . 37

5.2 awd-lstm-lm (by Salesforce) 38

5.3 Datasets and preprocessing 39

5.4 Model architecture . 40

5.5 Models and training details 40

6. Results from experiment 42

7. Conclusion 46

8. Future work 48

Bibliography 49

v

Abbreviations

ASR Automated Speech Recognition

NLP Natural Language Processing

NN Neural Network

FFNN Feedforward Neural Network

RNN Recurrent Neural Network

LSTM Long Short-term Memory

LM Language Model

SLM Statistical Language Model

ML Machine Learning

NNLM Neural Network Language Model

PPL Perplexity

GPU Graphical Processing Unit

<unk> unknown

vi

1. Introduction

This thesis introduces a new toolkit for building neural network language

models (NNLMs). Language models (LMs) give a probability of how likely

a sequence of words might appear in a certain order in a sentence. LMs

are applied to a wide range of modern natural language processing (NLP)

applications. LMs are important for automatic speech recognition (ASR),

machine translation, and spelling correction systems, to name a few. LMs

form a significant part of NLP applications because many tasks depend

on the quality of the LMs used. The quality of LMs is determined with

perplexity (PPL), which tells how well they can predict the correct sequence

of words. (Chelba et al. 2013)

These days, computational load is no longer as a significant limitation

as it has been for research and development of language models, Auto-

matic Speech Recognition (ASR), or Natural Language Processing systems.

The technology has evolved rapidly by making computers, and especially

Graphics Processing Units (GPUs), more powerful, cheaper, and hence,

more accessible (You et al. 2019; Chen et al. 2014; Colic, Kalva, and Furht

2010). However, this computational load is still a limitation for the train-

ing of LMs. This limitation is one reason for building a new tool in this

master’s thesis, MatsuLM, to reduce the computational load of language

model training with the latest machine learning frameworks. Reducing

the computational load can be done by using GPUs more optimally so that

the training times of LMs are reduced.

The computational processing power is essential for LMs and, in general,

for most machine-learning applications because the quality of the LMs

and other machine-learning models is affected by the quantity of the

training data. In the case of LMs, the data quantity limitation often

results from computational power. Training LMs with a large corpus

becomes unworkable if it takes too much time to train only a single LM.

1

Introduction

While developing LMs, there is often a need to perform test runs, and if

these take days, then progress can become painfully slow. Other factors

affecting the performance of LMs are the quality of the training data, the

similarity of the testing and training data, and the way of estimating the

performance and accuracy (e.g., perplexity) (Chelba et al. 2013).

Major companies already provide access to powerful computers without

any monetary fee to use them (e.g., Google Colab). Nevertheless, despite

these affordable or free resources, other factors hinder research in the field

of NLP. These include adequate funding, people with necessary competence

and knowledge, the availability of data for studies, and the tools necessary

to perform analysis.

1.1 Motivation

The underlying motivation for this Master’s thesis came from the Depart-

ment of Signal Processing and Acoustics at Aalto University, Finland, who

sought a functioning tool that matches their needs. The department has

been using a toolkit called TheanoLM, which relies on the Theano Python

library that is no longer supported or developed. Hence, updating the

toolkit is evident for the Department of Signal Processing and Acoustics at

Aalto University.

Over recent years, the author has worked with ASR and NLP systems,

notably in the Apple AI team, developing a voice assistant called Siri, and

has seen the rapid improvement in these systems during that time. In

the course of his work, the author has developed personal preferences for

using the most user-friendly tools and has listened to other users’ opinions

regarding their individual preferences. The Pytorch tool is considered to

be the easiest for new Machine Learning (ML) developers to learn and use.

For this reason, this thesis builds the newly presented toolkit on top of the

Pytorch library.

Companies and researchers wish to have tools that facilitate efficient

development. Naturally, these factors include cost efficiency, speed, and

accuracy. The initial investment required to purchase the hardware neces-

sary for performing machine learning, mostly GPUs that can train large

language models, can be tens of thousands of euros. When the models and

the training of these models are optimized, or when better tools are used,

the initial investments can be significantly reduced to only a few hundred

euros.

2

Introduction

It is possible to train models for free by splitting up the model’s training

with proper tools to reduce the computational burden enough to run the

training on free GPUs (e.g., Google Colab). This splitting up of the model’s

training gives the possibility to pause the training process, perform it on

multiple devices simultaneously, or even move the training to another

machine that can pick up where the previous machine left off.

These kinds of helpful language modeling tools are essential. For exam-

ple, on the development side, shorter development and training times ac-

celerate the whole development cycle noticeably. Moreover, faster language

models shorten the response time on the production side, for example, for

speech recognition products. Also, the current state-of-the-art tools all im-

plement the latest algorithms. Hence, by using these state-of-the-art tools,

one can ensure that the system is always up to date, and one can assume to

have the best opportunity for training the most accurate machine learning

models.

1.2 Objectives and research question

The research question of this thesis aims to create a modern open-source

Python library – known as MatsuLM – that will make neural network

language modeling (NNLM) faster and easier. This new NNLM toolkit

overcomes the handicaps and limitations of existing toolkits. For instance,

this tool provides researchers with a natural way of viewing training

parameters and model architecture. The tool allows defining the neural

network configuration in a separate file or as user inputs to a terminal

command when starting the training. Modern methods of adding training

parameters and model architecture provide a quick and easy way to update

the neural network architecture or to set hyperparameters. The new

toolkit incorporates user interface elements that have become standards

in machine learning frameworks. When the toolkit is aligned with these

standards, it will become more comfortable and faster for researchers and

other users to learn to use and develop further.

1.3 Outline of the thesis

This Master’s thesis consists of eight chapters. Chapter 1 introduces the

research topic, giving the motivations and research questions of this thesis.

3

Introduction

Chapter 2 provides some background to the subject of language modeling,

and chapter 3 explains what neural network language models are. The

research question is covered in chapters 4, 5, and 6: Chapter 4 describes

the MatsuLM toolkit; chapter 5 explains the experimental setup of the new

and existing NNLM toolkits; chapter 6 will go through the results of these

experiments. Chapter 7 explains the contribution of this research to the

collective community development of language modeling, and chapter 8

will point out some future work to be done related to the MatsuLM toolkit.

An illustration of this thesis’s outlines can be found in figure 1.1.

Figure 1.1. Outline of the Thesis

4

2. Language models

The field of natural language processing (NLP) has been developing rapidly

over the past decade. Some of this development has resulted from increased

computational capacity, such as larger memories and more powerful graph-

ics processing units (GPUs). These have enabled larger datasets and ever

more complex and computationally heavy calculations (Chen et al. 2014;

Colic, Kalva, and Furht 2010; You et al. 2019). These computational perfor-

mance improvements have also enabled researchers to use a much greater

training corpus for language modeling (LM), a sub-field of NLP (Chelba

et al. 2013).

One can think of language modeling as a task of giving a probability

to given sentences. In practice, this would mean that when one inputs a

sequence of words into a language model, the language model will output

a probability of how likely these words will appear in the given order.

This chapter will introduce the importance of language models in modern

society and explain how the classical (non-neural) language models work.

2.1 Need for language models

Language modeling in modern times began in the 1980s when the first

models of any significance were developed (Rosenfeld 2000). These first

models were designed for written words, and, since then, the model has

been adapted and improved to include the capture of spoken words. Today,

language models are needed to accelerate and enhance the communica-

tion between humans as well as for the interaction between humans and

computers. Some concrete and visible use cases for language models are

intelligent keyboards, response suggestions for emails (Kannan et al. 2016),

autocorrection for spelling, and virtual assistants.

5

Language models

2.1.1 Accelerating communication

The most visible language model implementation, with regards to the

acceleration of communication between humans, is the autocompletion

tool on a typical smartphone. Google already started using autocompletion

in its search engine (figure 2.1) in 2004 to improve and accelerate the

interaction between humans and computers.

Figure 2.1. An example of accelerated human-computer interaction by Google

Nowadays, both Google and Apple are using language models in their

software to predict subsequent words when writing messages (figure 2.2).

This prediction of subsequent words can be done with so-called statistical

language models or neural network language models (NNLMs). Today,

however, the preference is more for the use of NNLMs due to their superior

performance, which will be discussed in chapter 3.

(a) iPhone (b) Android phone

Figure 2.2. An example of accelerated interaction between people

2.1.2 Human-computer interaction

Language models play a critical role in human-computer interaction with

automatic speech recognition (ASR) systems when ASR systems seek to

understand the context of what the human is trying to say. For humans,

this matching of speech or voice to correct words is easy because we have

learned, through trial and error, to automatically match the correct context

to words and phrases throughout our lives. However, computers lack the

contextual knowledge that is necessary for effectively processing spoken

communication. For example, if a human asks:

Can you hear me?

6

Language models

Now, as the pronunciation of “hear” and “here” are so similar, the ASR

may inaccurately interpret the question as:

Can you here me?

This question would make no sense for a human being who possesses the

background knowledge that helps to understand or "predict" the intended

phrase. The language model is the tool that tells the speech recognition

system, which of the given set of possible phrases, is the most probable.

Hence, the LM is essential for the performance of a speech recognition

system as it might not be sure which words have been said. For example,

due to similar pronunciations, poor hearing of the voice, or loud background

noise.

A language model can identify phrases that make no sense to a human

speaker because they have learned the probability of sentences by seeing

vast amounts of written text. A language model, trained with quality data,

should not have seen a sentence "Can you here me?" but it has most proba-

bly seen some combination of a sentence "Can you hear me?". Hence, if a

speech recognition system asks the language model which one of these is

most likely to appear, it will give a higher probability to the "Can you hear

me?" sentence. This way, LMs help ASR systems understand contextual

information, which improves accuracy and performance in speech recog-

nition. If speech recognition systems were not using a language model in

deciding what has been spoken, it would generate much more sentences

that would not make sense.

Some voice assistants can even show all possible interpretations of a hu-

man’s spoken phrase. For instance, Apple’s Siri is one such voice assistant,

as shown in figure 2.3.

2.2 Classic language models

The history of language models is rich. It started from the classic ap-

proaches based on statistical language modeling, such as n-gram mod-

els that used different smoothing techniques to handle unseen n-grams

(Kneser and Ney 1995). One recent summary of this history of language

modeling is done by Popkes (2018). What follows here is based on her

work and is supplemented with the work of Lankinen (2016). The au-

7

Language models

Figure 2.3. Possible interpretations of a spoken phrase

thor’s present work builds upon these sources, adding to the information

contained within them. However, some of the latest developments in the

rapidly emerging field of language modeling are limited out of this work’s

scope. For example, this work does not discuss the transformer language

models but suggest focusing on them in the future research (Radford et al.

2019; Devlin et al. 2018; Krause et al. 2019).

2.2.1 Statistical Language Modeling

One key function of NLP has been statistical language modeling, which is

critical for speech recognition and machine translation (Rosenfeld 2000).

Statistical language models aim to learn the probability P (w1, ..., wn) of a

sequence of words w1, ..., wn (Tomáš Mikolov, Karafiát, et al. 2010; Good-

man 2001; Jozefowicz et al. 2016). The chain rule of probability can be

utilized to calculate this probability:

P (w1, ..., wn) =
n∏

i=1

P (wi|w1, ..., wi−1) (2.1)

As there is much variation in the number of words that may precede a

given word, and also due to the complexity of calculating P (wi|w1, ..., wi−1)

for many words i, the probability of a word is typically conditioned on a

window of m previous words.

P (w1, ..., wn) ≈
n∏

i=1

P (wi|wi−m, ..., wi−1) (2.2)

There are numerous ways to use a language model. For example, the

8

Language models

model can anticipate and predict subsequent words; it can also issue

probabilities to sentences. The following example demonstrates this. The

language model may forecast that the sentence:

that is when I saw the three big giants walking towards me

has a greater likelihood of appearing in a text than the same sentence

with a different ordering of the words:

walking big that saw is the me three when I giants towards

Among other things, this is used for tasks that recognize words in ambigu-

ous contexts, like recognizing human speech, where the input is noisy. The

following section 2.2.2 introduces one of the entrenched classical language

models (called n-gram models) that have been used by the researchers for

decades.

2.2.2 N-Gram Models

The N-gram model is a language model with low complexity, which is

nothing more than a sequence of N words. For instance, a sequence of two

words is a bigram (or 2-gram): "I saw" or "walking towards". Adding a

word to the sequence creates a trigram (or 3-gram) that contains three

words; "walking towards me". In a trigram model case, the probability of a

sequence of words w1, ..., wn would be calculated in the following way:

P (w1, ..., wn) ≈
i=1∏
n

P (wi|wi−2, wi−1) (2.3)

A trigram model can be generalized because it observes the two previous

words in a given sequence, so it can be calculated as an N-gram that takes

into account N-1 words.

P (w1, ..., wn) ≈
i=1∏
n

P (wi|wi−N+1, ..., wi−1) (2.4)

Here we use the Markov assumption, which is the term for the basic

assumption that the probability of a word is only dependent on a limited

number of previous words. An easy way of calculating trigram or N-gram

probabilities is by using maximum likelihood estimation (MLE) (Jurafsky

and Martin 2014). The estimate given by MLE for the N-gram probability

9

Language models

of a word wi given a previous sequence of words h = wi|wi−N+1, ..., wi−1

can be calculated by summing the number of times wi appearances in

the context h, and normalizing this by dividing every observations with h

(Goodman 2001; Tomáš Mikolov 2012)

P (wi|wi−N+1, ..., wi−1) =
count(wi−N+1, ..., wi−1, wi)

count(wi−N+1, ..., wi−1)
(2.5)

For instance, consider that the words "three big" gives the context of

those words h, and we wish to forecast the likelihood that the next word in

the sequence w will be "giants". A training corpus offers a trigram model

the ability to count the number of times "three big" was followed by "giants"

and calculate:

P (wi|wi−N+1, ..., wi−1) =
count(”three big giants”)

count(”three big”)
(2.6)

Nonetheless, even N-gram models that have been trained with a large

corpus are problematic. The reason for this is that it is challenging to

calculate N-Gram probabilities. Like our previous example, numerous

sequences of words typically appear very infrequently, only once, or not

at all (Goodman 2001; Tomáš Mikolov 2012; Rosenfeld 2000). Let us

consider the three-word sequence "walking towards me". What is the

probability of having the word "me" following a sequence of words "walking

towards"? A training corpus may contain not a single instance of that

particular sequence. As a consequence, count(walking towards me) would

be zero, and hence, P (me | walking towards) would also be zero. This is

problematic as the sequence of words "walking towards" may appear a

number of times in the corpus. Forecasting:

P (me | walking towards) = 0 (2.7)

would fail to correctly estimate the actual likelihood of the sequence

appearing.

Thus, the use of a standard N-gram model would yield such inaccurate

zero probabilities on far too many occasions, making the model’s predictions

very noisy. Therefore, in order to circumvent probabilities of zero, it will

be necessary to apply smoothing techniques. These smoothing techniques

remove some probability mass from frequent events, redistributing it to

unseen events. For example, those that have been assigned zero probability

by the N-Gram model. (Goodman 2001; Jurafsky and Martin 2014; Tomáš

Mikolov 2012)

10

Language models

There are significant issues related to the use of N-gram models, even

though they are effective in certain contexts with a limited range of

words and phrases. Modern recurrent neural network language mod-

els (RNNLMs) can offer improved perplexities and error rates in speech

recognition systems compared to these traditional n-gram approaches

(Tomáš Mikolov, Karafiát, et al. 2010; Tomáš Mikolov, Kombrink, et al.

2011; Adel, Vu, et al. 2013; Adel, Kirchhoff, et al. 2014). The following

section introduces such RNNLMs.

11

3. Neural Network Language Modeling

The first neural network language model (NNLM) was introduced in 2001

by Bengio, Ducharme, et al. in the proceedings of Neural Information

Processing Systems. Since then, researchers have investigated how to

model language using neural networks. This research has accelerated

over recent years due to many benefits that NNLMs possess, and due to

increased computational performance that has made it possible to create

bigger and more complex NNLMs (You et al. 2019; Chen et al. 2014).

The benefits that NNLMs possess are their ability to learn continuous

word representations and complex relations by combining simple units in a

hierarchy of non-linear layers. Other benefits include the fast performance

in production and the model’s generalization so that extremely small or

zero probabilities would not be assigned to valid word sequences. (Arisoy

et al. 2012).

These continuous word representations can be created with word em-

beddings, which are vector representations of the words. When properly

creating the word embedding, semantically, or grammatically related words

should be mapped to similar locations in the vector space. Therefore, the

NNLMs can achieve good generalization of the model by giving realistic

probabilities even for the unseen sentences or word combinations. (Pen-

nington, Socher, and Manning 2014; Rong 2014; Arisoy et al. 2012). The

downsides of using NNLMs and the word embeddings is that the training

and creation require much computational power, it is slow, and it requires

vast amounts of data. (Keselj 2019)

This first proposed large-scale NNLM by Bengio, Ducharme, et al. (2003)

was based upon a simple feedforward neural network. Nevertheless, it was

not until 2010 when Tomáš Mikolov, Karafiát, et al. introduced recurrent

neural network language models (RNNLMs) that neural networks became

established as a state-of-the-art technique for language modeling, replacing

12

Neural Network Language Modeling

the classic N-gram techniques. Neural networks have been proven to be

exceptionally well-performing in this research field; for example, so-called

transformer language models (Radford et al. 2019; Devlin et al. 2018;

Krause et al. 2019).

The following chapter introduces the underlying architecture and func-

tioning of artificial neurons, feedforward neural networks (FNNs), recur-

rent neural networks (RNNs), long short-term memory (LSTM) networks,

and how to evaluate the quality of these language models. The chapter

also introduces different types of NNLMs: word-based, sub-word-based,

and character-based.

3.1 Artificial and Biological Neurons

Artificial neurons are the building blocks of artificial neural networks. The

idea behind artificial neurons is that they mimic biological neurons to

a certain level, for example, the dendrites, cell bodies, or a nucleus and

axons, as seen in the figure 3.1.

These biological functionalities are replaced in artificial neurons with

mathematical models. However, artificial neurons are nowhere near as

sophisticated as biological neurons, partly because the knowledge of the

biological neurons is still limited. Hence, artificial neurons are simplified

versions of their biological counterparts, for instance, by ignoring signal

timing or the destruction and creation of new connections between neurons.

Nevertheless, even these limited artificial models are sophisticated enough

to solve simplified machine learning tasks.

An artificial neuron’s simple abstraction of the biological neuron is the

following. A neuron receives input from another neuron’s output. An

exception to this is the first neuron, called the input neuron, that takes

in the input values for the network. Each connected neuron has a weight

(wn) that affects the previous neuron’s output value before it reaches the

neuron’s input. This weight (wn) can be positive or negative, and that

determines how significant influence the first neuron has on the second

one. With the weights (wn), artificial neurons have a bias that acts as a

threshold for the neuron’s activation, either decreasing the threshold with

a negative bias or increasing it with a positive bias.

The "input summation" (s) calculates all of these inputs (xn) that are

multiplied with their weights (wn), and their products are summed and

added to the bias. Mathematically it can be represented by the following

13

Neural Network Language Modeling

Figure 3.1. Comparison of biological and artificial neurons

equation:

s =
n∑

i=1

xi ∗ wi + b (3.1)

To make the notation simpler, we can add the bias (b) into the sum

function. This can be done with an additional constant x0 = 1 to the input

vector and making the bias one of the weights (w0 = b). Thus we can

reformulate the previous equation 3.1 as:

s =

n∑
i=1

xi ∗ wi = w⊤x (3.2)

The neuron output is computed by adding this “input summation” (s) to

14

Neural Network Language Modeling

the neurons activation function σ.

σ(s) = ŷ = zn (3.3)

The activation functions then decide what kind of signal will be sent

forward to the following neurons. Hence, activation functions are also

known as squashing functions, since they control the neuron’s output

limits. Some currently used activation functions are sigmoid, tanh, and

ReLu, which limit the output to some specific range, like between -1 and

1, or to be greater or equal to zero. An illustration of a neuron with the

mentioned properties can be found from figure 3.1.

3.2 Feedforward neural networks

A widely used definition for feedforward neural networks (FFNNs) is as

follows, “A feedforward network defines a mapping y = f(x; θ) and learns

the value of the parameters θ that result in the best function approxima-

tion” (Goodfellow, Bengio, and Courville 2016, p. 167). As the name of

the model suggests, the information flows only in a single direction from

input x to output y, and hence they are called feedforward networks. More

precisely, in feedforward networks, there are no recurrent connections to

feed the model’s outputs back into itself. In its simplest form, the archi-

tecture comprises an input layer, at least one intermediate (hidden) layer

and a prediction layer called an output layer. A simple illustration of a

feedforward neural network (FFNN) with the mentioned properties can be

found from figure 3.2.

Figure 3.2. An example of feedforward neural network

Each layer is parameterized with some weights W and each of the layers

activation function with a squashing function f . When the input values

15

Neural Network Language Modeling

would be x, this would mean that this network’s output mapping would be

the following:

f(x) = foutput
(
fhidden(f input(x))

)
(3.4)

We can rewrite this function when we know that the network is fully

connected, meaning that each layer’s neurons are connected to all the

neighboring layer’s neurons. Rewriting can be done by using the output

function of an artificial neuron from the previous section 3.1. When an

artificial neuron’s output is σ(w⊤x), we can apply this for the whole layer by

representing all the layer’s weights as a weight matrix W . This way a whole

layer of neuron outputs can be represented as a vector σ(W⊤x), making

it possible to rewrite the mapping represented by the whole network as

(Goodfellow, Bengio, and Courville 2016):

f(x) = foutput(fhidden(f input(x))

= σoutput(W⊤
output(σ

hidden(W⊤
hidden(σ

input(W⊤
input ∗ x)  

input layer output

)

  
hidden layer output

)))

  
output layer output

(3.5)

A drawback of FFNNs in language modeling is their inability to handle

varying sequence lengths and the inability to retain the memory of earlier

data. This drawback means that if an FFNN model took one word as an

input, it would be almost impossible for the FFNN model to predict the

word xt+1 in a sentence based on the one previous xt word because the

network can not know or remember the word xt−1 that came before the

input word xt. An example sentence could be "How are you". If trying to

predict the last word of the sentence and the model is given two previous

words, "How are", it is easy to say in this case that the possibility of next

having the word "you" is a good one. On the contrary, if seeing only one

preceding word "are", it is nearly impossible to predict what would follow

because the options are vast. This example is illustrated in the figure 3.3,

when xt is the input at the time t and ht is the output of the feedforward

neural network (Affnn). The output is also called the prediction.

However, an FFNN can also be built to take more than one word as

an input. In this case, the FFNN would have a local context constructed

from the current input words. For example, if the FFNN input size would

be two, it would be much more capable of predicting the "you" when the

16

Neural Network Language Modeling

input is "How are". This FFNN’s ability to have local contexts is useful, for

example, when creating word embedding, which is a way of mapping the

relations between different words. However, even when having more that

one word as an input, FFNNs are still unable to handle varying sequence

lengths and retain the memory of earlier data, which is impractical for

language models.

Figure 3.3. An example of feedforward neural network’s drawback of handling inputs
case-by-case (<eos> stands for end-of-sentence)

More detailed information about FFNNs can be found from the Deep

Learning book by Goodfellow, Bengio, and Courville (2016).

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are intended for processing sequen-

tial data. Unlike feedforward neural networks, these network variants

contain cyclic connections that can withhold the memory of previous in-

puts, as illustrated in figure 3.4. RNNs exist in multiple architectures,

and their extreme versatility has been highlighted by Goodfellow, Bengio,

and Courville (2016), “almost any function can be considered a feedfor-

ward neural network, essentially any function involving recurrence can be

considered a recurrent neural network.”

Feedforward and recurrent networks differ mostly in how parameters

are shared between different parts of a model. The sharing of parameters

makes it possible to extend a model to examples of different lengths and

generalize across examples. As Goodfellow, Bengio, and Courville (2016)

indicate, the sharing of parameters is of great use in cases when the same

information can be found at several positions within an input sequence.

17

Neural Network Language Modeling

Figure 3.4. An example of a recurrent neural network’s cyclic connections

To make their point, we can look at two sentences, "I climbed Mont Blanc

in 2019" and "In 2019, I climbed Mont Blanc". When a machine learning

model is being trained to extract the year of the activity, the model should

be able to identify the year 2019 regardless of it appearing at the sixth or

second position in the sequence of words comprising the sentence. This

kind of learning would be complicated for traditional feedforward networks

that process fixed-length sentences and contain different parameters for

each input feature. Consequently, the FFNN model must learn, one by one,

all the rules of the language in each sentence position. RNNs, therefore,

offer greater time efficiency and performance by sharing the same weights

throughout multiple time steps. (Goodfellow, Bengio, and Courville 2016)

Figure 3.5. An example of unfolded recurrent neural networks cyclic connection

Parameter sharing is possible due to the operation of the RNN. When

the output of a hidden unit is calculated, each component of the output

is generated by applying the same update rule to each component of the

previous output. This update can be illustrated by unfolding the RNN

cyclic connection as in figure 3.5. The values of the hidden units at time

step ht, for an RNN with low complexity, can be described as follows

(Goodfellow, Bengio, and Courville 2016):

ht = f(ht−1, xt; θ) (3.6)

where ht−1 is the hidden state of the previous RNN time step, xt is the

input for the current time step, and θ is the value(s) used to parametrize

18

Neural Network Language Modeling

f for all used time steps. Here we can see that the hidden state ht con-

tains information about all the inputs because each hidden state uses the

previous time step’s hidden state as an input. This way, the RNN can

include the whole input sequence past to every calculated hidden state,

which created a sort of a "memory". This hidden unit that contains the in-

formation throughout multiple time steps is called a "memory cell" (Géron

2019; Goodfellow, Bengio, and Courville 2016). This memory cell makes

RNNs great neural network models when the prediction can be improved

by remembering the previous time steps. For instance, in the case of lan-

guage models which might be used for predicting the subsequent word in a

sentence.

3.3.1 Limitations

Simple Recurrent Neural Networks (RNNs) also have some significant

drawbacks that appear, primarily when they are used in long sequences.

When simple RNNs try to learn long-term dependencies, their performance

is inadequate. The reasons for this are the gradients that tend to vanish

or explode when propagated through multiple stages (Graves, Mohamed,

and Hinton 2013; Bengio, Frasconi, and Simard 1993; Olah 2015).

To make this clearer, we can examine some examples. If we are trying

to predict the last word in a sentence like "As the sun sets and darkness

falls" or "Merry Christmas", we do not need more context to make good

predictions because it is so obvious what the last words are most likely

going to be. In these cases, the relevant information to predict the correct

word is relatively close. Hence, a simple RNN works well in these cases, as

illustrated in figure 3.6.

Figure 3.6. An example of a short Recurrent Neural Network connection

However, when the relevant words are further away from the predicted

word, a simple RNN does not work as well. Let us consider these two

sentences in a longer text "I’ve lived my whole life in Spain. . . I can fluently

19

Neural Network Language Modeling

speak Spanish." If we want to predict the last word here, we can predict

from the last sentence that the last word will be a name of a language,

but to know what the language is, we need to remember the previous

sentences. Unfortunately, when it comes to these long-term dependencies,

simple RNNs cannot learn them effectively (figure 3.7). (Bengio, Frasconi,

and Simard 1993; Bengio, Simard, and Frasconi 1994)

Figure 3.7. An example of a long Recurrent Neural Network connection

There are many ways to solve these long dependency problems. For

instance, "skip connections" connects present and distant past variables

(Lin et al. 1996). However, this thesis will concentrate on one special RNN

architecture, called Long Short-Term Memory (LSTM), that is designed

to solve the vanishing and exploding gradient descent problem. A more

detailed description of RNNs can be found from the Deep Learning book

by Goodfellow, Bengio, and Courville (2016).

3.4 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) is

among the most common neural network architectures, with convolutional

neural networks (CNNs) (Fukushima 1980; LeCun et al. 1999) and the

modern transformer models (Vaswani et al. 2017; Devlin et al. 2018), being

used currently. LSTM is one of the most commonly used RNN architectures

when it comes to machine translation (Sutskever, Vinyals, and Le 2014)

or speech (Graves and Jaitly 2014; Graves, Mohamed, and Hinton 2013)

and handwriting recognition (Carbune et al. 2020; Graves 2013; Graves

and Schmidhuber 2009). LSTM is also used, for example, to help with

motion (Ullah et al. 2017) and emotion recognition (Liu et al. 2018; Fan

et al. 2016).

Long Short-Term Memory (LSTM) networks are built to overcome some of

the problems faced by RNNs when trying to learn long-term dependencies.

LSTM architecture design is more capable of finding and learning long-

term dependencies and storing this information than standard RNNs

20

Neural Network Language Modeling

(Goodfellow, Bengio, and Courville 2016; Sak, Senior, and Beaufays 2014;

Graves 2013). The LSTM network has been shown to give outstanding

results in the previously mentioned tasks like machine translation, speech

recognition, and handwriting recognition.

LSTM was introduced by Hochreiter and Schmidhuber (1997), and their

work has been complemented and popularized by plenty of people. It is also

essential to keep in mind that there are variations even between LSTMs,

so the description that this thesis work will give is only one form of LSTM

that is commonly used.

To better understand LSTMs, it is good to first look at some basic RNNs.

Recurrent neural networks always have some repeating chain of neural

networks. In the case of basic RNNs, this is something straightforward,

like a single tanh neural network layer, as illustrated in figure 3.8.

Figure 3.8. An example of a standard repeating Recurrent Neural Network module

When it comes to LSTMs, they also have this similar chain structure, but

they are just more complicated by having four neural networks layers that

interact with each other in a particular way (figure 3.9)

Figure 3.9. An example of LSTM modules (Olah 2015)

3.4.1 LSTM structure

This thesis deals with one of the commonly used types of LSTM structure

and its implementation in Python. This section will introduce the structure

of the particular LSTM implementation used in this thesis and explain its

21

Neural Network Language Modeling

functionality.

The core functionality of an LSTM network is called the "cell state"

that goes through the LSTM network. Each LSTM module interacts with

that cell state in three ways. First of all, it can increase or decrease the

importance of some features that the cell state is carrying or storing in

its memory. Secondly, it can add new values to the cell state. The third

interaction is the copying of the cell state values. Those cell state values

will be used in the making of the next prediction. In the case of language

models, this could mean the predictions of the most likely following words.

The structure of a single LSTM cell is illustrated in figure 3.10, and its cell

state flow is highlighted with the three interaction stages that it has with

the rest of the LSTM cell.

Figure 3.10. LSTM module’s cell state

For example, if the last word or LSTM module input is a female name

such as: "Then I saw Anna...", this might mean that this LSTM module

that got the "Anna" as its input might want to modify the cell state to

remember that there has been a mention of a female person. The LSTM

network can then remember that it should refer instead to she and not he

if there will be a reference to a person in the future. As an example, if the

sentence would continue: "Then I saw Anna in the car waving hand",

the model can use the cell state to decide if the word should rather be her

than his. Moreover, the LSTM module can also make the cell state forget

things in the "Edit Memory" interaction. For example, if the previous text

would continue as "... her hand to my brother, who had stopped because

was...". The missing word could now be either she or he, so the cell

state should forget that it should be a she.

22

Neural Network Language Modeling

The first step of an LSTM module is illustrated in figure 3.11. There

it gets the latest input (xt), which is the latest word of the sentence,

and the previous LSTM module’s prediction (ht−1), which is an encoded

version of the word that the previous LSTM module’s prediction of the next

word. These words are represented in a vector format, which is a numeric

representation of words so that they can be represented to a computer.

These "word vectors" can also be trained so that similar words are close

to each other in the vector space, making it possible for the computer to

understand the similarity and relations of the words (Pennington, Socher,

and Manning 2014; Rong 2014; Tomas Mikolov et al. 2013). This way, the

words can be represented as a list of numbers, which is a vector, and these

two vectors can be combined into a single long vector. In matrix terms, this

is called concatenating, which is the process of joining one or more matrices

to make a new matrix. In this case, we concatenate two one-dimensional

matrices into a new bigger one-dimensional matrix. This concatenated

input vector’s notation is presented in the equation 3.7

Vinput = [ht−1, xt]  
concatenation

(3.7)

Figure 3.11. Concatenating the previous hidden state and the input

The second step, illustrated in figure 3.12, is where the LSTM module

decides what will be forgotten from the cell state given the latest input and

previous prediction information. So the previously concatenated vector

(figure 3.11) is given as an input to the so-called "forget gate layer". The

forget gate layer has a fully connected neural network layer that takes in

the concatenated vector and outputs a vector size of the cell state memory.

23

Neural Network Language Modeling

The output of this fully connected neural network layer (ft) is a list of

numbers between 0 and 1, which is given to the so-called "forget gate".

The forget gate does what it says, makes sure that the cell state memory

is edited so that it forgets irrelevant info as illustrated in figure 3.10 and

explained in the "she or he" case. The forget gate layer’s (ft) output values

are multiplied in the forget gate (or "edit memory") parts with the cell

state’s corresponding values to create the "forgetting" affect in the cell

state. When the forget gate value is closer to 0, it means that the cell

state’s corresponding value will be "more forgotten" if not totally and when

the forget gate value is close to 1, the cell state’s corresponding value will

be "remembered". The mathematical notation of this forget gate’s functions

is presented in equation 3.8.

ft = σ(Wf · Vinput + bf) (3.8)

Figure 3.12. Forget gate

In the third step, which is illustrated in figure 3.13, the LSTM module

decides what will be added to the cell state or, in other words, to the

LSTM network’s memory. Here the same concatenated list will be given

separately as an input to two different networks where the first one creates

a vector, called the "input gate" (it), that decides what new data is essential

or irrelevant and hence, should be kept or forgotten. The second network,

the so-called tanh layer, uses the input vector to form new candidate

values (C̃t) similar to the cell state. The candidate vector includes the

candidates that would be added to the cell state, given the latest input (xt)

and previous prediction information (ht−1).

24

Neural Network Language Modeling

However, before this new candidate vector (C̃t) values will be added

to the cell state, the candidate vector (C̃t) will also be multiplied with a

second forget gate, called the "input gate layer" (it). The input gate layer

makes sure that only the relevant information is added to the cell state

and that irrelevant information will be forgotten before it reaches the

LSTM network’s memory (cell state). The equation of calculating the input

gate value it is illustrated in equation 3.9 and the candidate vector’s (C̃t)

calculation before multiplying it with the input gate values in equation

3.10.

An example of the added info to the cell state could be information about

a person’s gender, which was revealed in the last input.

it = σ(Wi · Vinput + bi) (3.9)

C̃t = tanh(WC · Vinput + bC) (3.10)

Figure 3.13. Input gate

The 4th step, illustrated in figure 3.14, is where the complete update

of the LSTM network’s memory is done. This update means calculating

the new cell state Ct. To get the updated cell state, we will first multiply

the previous cell state Ct−1 with the forget gate ft to see what we need to

keep and remove from the LSTM network’s memory. After this, we will

add the candidate vector C̃t that has also been multiplied with another

forget gate called the "input gate" (it), which makes sure that only relevant

25

Neural Network Language Modeling

information is added to the cell state, the LSTM network’s memory.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.11)

Figure 3.14. Cell state update

The 5th and the last step, illustrated in figure 3.15, is where we generate

the prediction output (ht) of the LSTM module. This prediction will be

based on the new cell state (Ct) that was just created in the previous step.

To get the prediction output (ht), the new cell state vector (Ct) needs to

first go through a tanh layer, which pushes all the values between -1 and 1.

This modified tanh cell state vector (Ct) will be then multiplied with yet

another input forget gate called the "output gate "(ot), which is calculated

in equation 3.12, to make sure that the output includes only relevant

information. The mathematical notation of generating the hidden state ht

is presented in the equations: 3.13

ot = σ(Wo · Vinput + bo) (3.12)

ht = ot ∗ tanh(Ct) (3.13)

3.5 Evaluating Language Models

There are two ways of evaluating a language model’s performance, either

extrinsically and intrinsically. Extrinsic evaluation refers to embedding

the language model in an application, letting users test the updated sys-

26

Neural Network Language Modeling

Figure 3.15. Output gate

tem, and telling how much they think the application improves the quality

of their end-user experience. For example, an extrinsic evaluation could be

performed by embedding a language model to a smartphone’s autocomple-

tion tool. With this embedded autocompletion tool, the users could score

how useful the autocompletion is and how much time it saves from them

or how often they use it.

Intrinsic evaluation metrics make it possible to measure the quality of

a model detached from any particular application, which means that it

makes it easier to compare with other models (Jurafsky and Martin 2014).

In language modeling, the most commonly used intrinsic evaluation metric

is perplexity (Goodman 2001; Tomáš Mikolov 2012). For doing an intrinsic

evaluation, there needs to be a corpus of data that acts as a test set. This

corpus of test data is separate from the training data that is used to train

the language model. The test set also ensures that the model will not be

over trained with the particular training data, which is called overfitting a

model with training data (Jurafsky and Martin 2014).

These two evaluation strategies complement each other. However, this

thesis only uses intrinsic evaluation because the goal of the experiment

section 6 is to verify that different NNLM toolkits are able to produce

comparable models. Hence, intrinsic (perplexity) testing is sufficient and

there is no need for extrinsic evaluation as it is vaguer and a much slower

method for evaluating language models.

27

Neural Network Language Modeling

3.5.1 Perplexity

A language model’s perplexity (PPL) on a given test set is the inverse

probability of the test set, normalized by the number of words (Jurafsky

and Martin 2014). When the test set is W = w1, w2..., wn :

PPL(W) = P (w1, w2, ..., wn)
− 1

n

= n

√
1

P (w1, w2, ..., wn)

(3.14)

It is possible to use the chain rule for expanding the probability of W :

PPL(W) = n

√ n∏
i=1

1

P (wi|w1, w2, ..., wn)
(3.15)

As an example, for a bigram (or 2-gram) language model this would be

computed as follows:

PPL(W) = n

√ n∏
i=1

1

P (wi|wi−1)
(3.16)

As this equation shows, the PPL is high when the probability of the

words in a particular sequence is low. However, we want to maximize

the conditional probability of word sequences and minimize the PPL of a

test set. In practice, this means that we are trying to create a language

model that can mimic the word sequences of the test set so that it is able to

predict a subsequent word when given the previous words. When assuming

that the test set is a perfect representation of the language, it means that

the smaller the PPL is, the better the language model performs in creating

the actual utterances used in the language (Jurafsky and Martin 2014).

Perplexity has useful properties. For instance, PPL can be easily com-

puted for a set of test data. Computing PPL with any language model with

a single training and test set makes it ideal for comparing different lan-

guage models’ performances. This fact makes it one of the fastest overall

quality metrics when comparing language models. (Jurafsky and Martin

2014; Goodman 2001; Tomáš Mikolov 2012)

Perplexities also have downsides. First of all, an improvement in PPL

(intrinsic) does not necessarily mean an extrinsic performance improve-

ment in a language processing application such as machine translation

or speech recognition. Hence, LM’s improvement should always be tested

also extrinsically in the application before concluding the evaluation of the

28

Neural Network Language Modeling

model. However, the PPL often correlates with the extrinsic improvement

of the language model; consequently, it is commonly used as an indicator

of the quality of the language model. It is also important to note that the

perplexities of two different language models are comparable only if they

have the same vocabularies. (Jurafsky and Martin 2014)

3.6 Lexical unit selection for NNLM

Neural network language models can be built in a few different ways

when it comes to the training data format. The traditional way of training

language models has been to use word-based training data. However, word-

based models have some drawbacks, and hence, other techniques have

been developed. Other models built to overcome the challenges that word-

based models face are sub-word based models, character-based models, and

combinations of these two models. This section introduces these different

ways of building NNLMs.

3.6.1 Word-based models

Word-based language models have the benefit of being the most intelligible

language models. It is easy for a human being to understand how a word-

level based language model works when it estimates the probability of

a sequence of words. Word-based embeddings are also well suited for

capturing the distributional similarity between words. However, there are

also disadvantages of using only word-based language models. (Jurafsky

and Martin 2014)

One of the disadvantages related to these word-based language models

arises when the vocabulary of these models grow. To calculate the proba-

bility distribution with a vast vocabulary becomes computationally heavy

and slows down the system. The reason for this is the amount of calculated

inner products that are the vocabulary size (V) times the word vector (w)

length (len(V) ∗ len(w)) which in turn radically slows down the updates

on the gradient descent (Morin and Bengio 2005). This problem arises

with some languages that simply have too vast a lexicon to represent every

word as an embedding.

Fortunately, there are methods that seek to address this challenge. Some

examples of these are Hierarchical Softmax (Morin and Bengio 2005),

Importance Sampling (Bengio, Senécal, et al. 2003), class-based models

29

Neural Network Language Modeling

(Brown et al. 1992), Noise Contrastive Estimation (Gutmann and Hyväri-

nen 2010; Mnih and Kavukcuoglu 2013), and self normalizing partition

functions (Brébisson and Vincent 2015).

Another drawback is that even languages or applications with manage-

able lexicons will encounter unknown words due to spelling mistakes and

new and borrowed words from other languages (Jurafsky and Martin 2014).

These word-based language models can only model the words that they

know. They are limited only to the words that have been included in the

model initiation phase when the initial word vectors were created. If the

language model sees words that it does not know, it will replace that word

with an <unk> (unknown) token. Replacing words with <unk> tokens

decreases the accuracy and performance of the language models due to the

loss of the structure and sense of a sentence.

Having an upper limit for vocabulary is a major problem with agglutina-

tive languages because even some common words might not be included

in the "known" corpus. The Finnish language is one such problematic lan-

guage because it is possible to create words by concatenating morphemes.

Hence, it has a vast amount of infrequent words that are some morphologi-

cal variants, which creates an extensive vocabulary, making word-based

models impractical (Kurimo et al. 2006).

3.6.2 Sub-word based models

Solutions based on larger sub-word units have proven to be able to deal

with new words and offer reasonable accuracy and training speed (Tomáš

Mikolov 2012). Sub-word approaches also have some drawbacks, such as

the specification of the sub-word unit creation, which often differs from

language to language. Also, the fact that a word can have multiple different

segmentations into sub-word units depends on the context (Bojanowski,

Joulin, and Tomas Mikolov 2015). For instance, in the Finnish language,

the word "kuusi" might mean the number six, spruce, or "your moon".

Depending on the context, the ideal sub-word units would be either "kuu"

(moon) "-si" (suffix for your) or "kuusi" (six or spruce).

3.6.3 Character-based models

Character-based language models solve problems in capturing the similar-

ity of words like "drink", "drinks", and "drinking", unlike the word-based

model (if not using pre-trained word embeddings like glove from Penning-

30

Neural Network Language Modeling

ton, Socher, and Manning (2014)). Also, character-based models do not

need to decide how to spit words as the vocabulary is just all the alpha-

bets. However, they have their drawbacks. For example, to successfully

model long-term dependencies, we need large hidden representation, which

means higher computational costs, that might become unreasonable in

practice (Bojanowski, Joulin, and Tomas Mikolov 2015). One successful ap-

proach to overcome some problems of both word-based and character-based

language models is a model that uses both of them as an input (Verwimp,

Pelemans, Wambacq, et al. 2017; Jurafsky and Martin 2014).

31

4. MatsuLM

The main goal if this work is to present a simple PyTorch-based NNLM

toolkit called MatsuLM1. It is built for training NNLMs that can be used

for word prediction in autocompletion tools, scoring the "rightness" of

sentences, or generating text. The tool has been written using a Python

library called Pytorch, which allows developers and researchers to modify

neural networks and tune the training process effortlessly. This effortless

tuning is essential for both research and industry since the models have

to be trained with multiple different configurations to figure out how to

develop the best performing language models.

One part of this LM development process includes so-called hyperpa-

rameter optimization, where the different default parameters are set for

the models and observed which parameters perform the best (Bergstra

et al. 2011; Falkner, Klein, and Hutter 2018). The other part of this LM

development process is to build different model architectures and compare

their results with each other. All of this is made possible with Pytorch,

and the new toolkit called MatsuLM. This new toolkit aims to make it

easier and faster to run the previously mentioned training and testing

comparisons to speed up research and product development.

In addition to the flexibility, Pytorch is optimized to utilize multiple

GPU and CPU cores to speed up and parallelize the massive numerical

computation. Computational optimization is critical to keep the research

and product development iteration cycle as fast and productive as possible.

GPU utilization is essential because the training times of neural networks

can be 10 to 100 times faster on GPUs than CPUs (Chen et al. 2014; Colic,

Kalva, and Furht 2010). Concerning parallel computation, even with the

most efficient GPUs, the training time of complex and computationally

heavy models can take multiple days (You et al. 2019). Hence, it is crucial

1https://github.com/RikoNyberg/matsulm

32

MatsuLM

to parallelize the computation to multiple GPUs. Then, it is still possi-

ble to decrease the computation time significantly even if there are no

possibilities to improve the computation time by optimizing the code or

hardware.

The drawbacks of MatsuLM are that it is only a small tool and does

not yet have comprehensive testing in place, and there are only a few

integrations build for it. Also, the amount of documentation and example

code is more limited than in the existing tools that have been used in a

variety of project settings.

4.1 Toolkit description

MatsuLM is currently the most up to date language modeling toolkit

created with PyTorch. It is compatible with the latest PyTorch version

and created using the latest best practices of machine learning models.

MatsuLM is created to be as lightweight as possible. These are the reasons

why MatsuLM seems to be faster than other NNLM toolkits. When the

models are using the latest PyTorch libraries, they can use modern GPUs

as efficiently as possible. MatsuLM is also including all the necessary tools

to track and save the models that are being trained.

MatsuLM currently includes an LSTM algorithm. There is a simple

LSTM version, which is used in this master’s thesis, but there are already

built-in options that can be used to create more complex LSTM models.

As an example, the LSTM can be bidirectional or the optimizer, and the

amount of the layers can be redefined. The complete list of all the editable

hyperparameters can be found here:

• num_layers: Number of LSTM layers

• bidirectional: Define if the LSTM will be bidirectional

• embed_size: Word embedding size

• hidden_size: Hidden layer size

• init_scale: Initial scale where the models’ weights are uniformly

spread (e.g. init_scale=0.5 creates weights between -0.5 and 0.5)

• init_bias: Initial bias of all the models’ weights

• dropout: Percentage of the words that will be dropped from each

training input and between each LSTM layer if there is more than

33

MatsuLM

one layer.

• weight_decay: A percentage that creates a penalty (L2) to the cost.

This should lead to smaller model weights.

• optimizer: Option for choosing an optimization algorithm (e.g. "sgd"

or "adam")

• seq_length: Length of one sequence used for the training. Currently,

the count of words.

• batch_size: Number of sequences in one training batch

• num_epochs: Number of times the same training data is used for

training.

• lr: The learning rate of the LSTM model

• lr_decay_start: The epoch where the learning rate starts to be decay

• lr_decay: Percentage on how much the learning rate will decay after

every epoch

• clip_norm: The minimum and maximum weight which will be en-

forced by clipping a weight if it goes over or under (e.g., clip_norm=5

means that the min is -5 and max is 5)

Other parameters that can be edited are:

• log_interval: Interval of logging the training results

• cuda: Defining if the GPU is used for the model training

• seed: Seed for the language model to make it possible to replicate the

results later on

• save_model: Define if the best performing model will be saved

• model_path: Define where the model will be saved

The additional tools used in MatsuLM help in the process of language

modeling development and research. These helper tools are making it very

easy to do hyperparameter optimization and track what kind of language

models have been trained by saving the parameters and the results of the

trained models.

MatsuLM includes a simple hyperparameter search tool that has been

partially tailored for this toolkit with the use of a so-called flatten-dict

34

MatsuLM

2 python library. The hyperparameter search works by only listing each

wanted parameter to the input dictionary. The hyperparameter search tool

will then create all possible combinations of the given parameters for the

trained models. It will also take care of saving the best language model

versions from each of the hyperparameter combinations.

The tracking and viewing of the models and the training progress are

done with an integrated machine learning experiment management tool

called Sacred3. Sacred is an open-source Python library that makes sure

that all of the machine learning experiments and their configurations will

be recorded and stored. Storing them ensures that none of the experiments

go to waste and that they can be re-created later. To get the most out of

Sacred, MatsuLM also includes an instruction for the effortless setup of

Omniboard4, a web dashboard for the Sacred tool.

The use of the hyperparameter search or the Sacred integration is op-

tional but extremely useful. Details on how to set up and use these

additional tools with MatsuLM can be found from the GitHub page of

MatsuLM5. The MatsuLM structure is illustrated in figure 4.1.

Figure 4.1. Illustrating MatsuLM structure

2https://github.com/ianlini/flatten-dict
3https://github.com/IDSIA/sacred
4https://github.com/vivekratnavel/omniboard
5https://github.com/RikoNyberg/matsulm

35

MatsuLM

4.2 Adding new functionalities

Some additional functionalities will be implemented in MatsuLM soon.

For example, a possibility to automatically use the pre-trained word2vec

or glove word embeddings in the trained language models, support for

subwords, and the ability to rescore n-best lists (similarly as in TheanoLM).

Anyone is welcome to add these or other new functionalities that would

be useful to have in the MatsuLM toolkit. New features will be added to

MatsuLM through pull requests in GitHub, and the maintainer merges

them. If there are any issues, requests, bugs, or uncertainty on what

should be included in the MatsuLM toolkit, please create a new issue to

the MatsuLM’s GitHub repo.

36

5. Experimental setup

The experiments conducted during this thesis work utilize three different

NNLM toolkits: MatsuLM, TheanoLM, and awd-lstm-lm. MatsuLM is the

new NNLM toolkit that this thesis is presenting. TheanoLM and awd-lstm-

lm are existing NNLM toolkits that have been built for similar purposes.

All of these three toolkits are compared to each other for the purpose of

benchmarking the functionalities of each tool.

Additionally, there is one other promising NNLM toolkit that was also

examined during the research. This tf-lm NNLM toolkit is described in

a paper by Verwimp, Van Hamme, and Wambacq (2019). It is built on

top of the TensorFlow library, unlike any of the other examined NNLM

toolkits. Unfortunately, this tf-lm toolkit was still under development

during the time that this thesis work was ongoing, and the experiments

were blocked due to bugs in the toolkit. Hence, this toolkit was excluded

from the experiments conducted in this thesis.

Also the datasets and model architectures are described in this chapter.

This work used two different datasets to ensure that the results are not

dataset dependent and the experiments were done with a LSTM model

which is described in section 5.5.

5.1 TheanoLM

ThenoLM1 is a NNLM toolkit built with a Python library called Theano.

Theano allows a user to conveniently customize neural networks, while

simultaneously generating effective code that can efficiently use multiple

GPUs and CPUs for speeding up the model training by parallelizing com-

putation. TheanoLM adds to this by making it easy to create arbitrary

network architectures or to implement new layer types and optimization

1https://github.com/senarvi/theanolm

37

Experimental setup

methods. It also includes the popular layer types, like long short-term

memory (LSTM) or gated recurrent units (GRU), and optimizers, like Ada-

Grad or Adam. TheanoLM also has implementations with other tools and

libraries, for example, to Kaldi and Morfessor. The TheanoLM toolkit was

published with a research paper by Enarvi and Kurimo (2016). This toolkit

has been used and also extended by Enarvi, Smit, et al. (2017) and Smit

et al. (2017).

However, one major drawback with TheanoLM is that the support and de-

velopment has been ended for the Theano Python library. Hence, TheanoLM

is increasingly missing necessary updates, which makes the software in-

compatible with some software updates or new hardware, e.g., GPUs.

Incompatibilities create unexpected bugs, as this thesis shows, and make

the performance of the toolkit unstable and slow compared to other modern

NNLM toolkits.

While completing this thesis, the use of TheanoLM software turned out

to be one of the most time-consuming processes. To get the TheanoLM

working with the latest GPUs (Quadro P5000), it was necessary first to

download an old version of this toolkit from Github because the latest

version had unresolved issues. Then in order to make the GPU driver

work, it also needed a manual update to one of its’ python libraries called

gpuarray. Also, the training of the models had problems when running

more epochs because there was a feature that reran the same epoch with

a smaller learning rate if the perplexity or error did not improve enough.

This kind of behavior leads to looping indefinitely, which prevented running

as many epoch as with the other toolkits.

5.2 awd-lstm-lm (by Salesforce)

The awd-lstm-lm2 is an NNLM toolkit that is built with the popular Python-

based machine learning toolkit Pytotch. This NNLM toolkit has been used

in two Salesforce Research papers by Merity, Keskar, and Socher (2017)

and Merity, Keskar, and Socher (2018). Awd-lstm-lm is a versatile toolkit

that gives easy access to create a different kind of NNLM. Moreover,

because it is built on top of the developing and well-supported Pytorch

toolkit, the toolkit’s performance is up to date. The toolkit is built according

to the modern machine learning software standards, making it accessible

for any software developer who has used Pytorch.

2https://github.com/salesforce/awd-lstm-lm

38

Experimental setup

The drawback that this awd-lstm-lm toolkit has is that it has not been

maintained or supported for the last few years. Active maintaining of

the toolkit is significant because the speed of the NLP research and the

development of machine learning libraries has been faster than ever in

the past few years. Hence, this toolkit starts to have bugs and some

incompatibilities. For instance, the latest PyTorch version that awd-lstm-

lm claims to support is 0.4 when the latest stable PyTorch version is

1.5. Despite this, the awd-lstm-lm is useful as it can be easily updated

manually to be compatible with more recent Pytorch versions. However,

this updating requires time and might break the toolkit.

5.3 Datasets and preprocessing

The experiment datasets used in this thesis are Penn Treebank (PTB)3 and

Wikitext-2 (wiki-2)4. Both of them are widely used datasets for experiment-

ing (Merity, Keskar, and Socher 2017; Yang et al. 2017) and benchmarking

language models5 (Ruder 2020).

The PTB dataset consists of 929k training words, 73k validation words,

and 82k test words. In this experiment, we have used the preprocessed

version provided by Tomáš Mikolov, Karafiát, et al. (2010). All the words

are lowercased, punctuations are removed, and numbers are replaced

with the letter N. The vocabulary is the 10000 most frequent words, and

all other words are replaced with <unk> (unknown) tokens. There is no

additional preprocessing done to this dataset during this research.

The vocabulary size of PTB is relatively small compared to other modern

datasets. Hence, this research will also experiment with the wiki-2 dataset

Merity, Xiong, et al. (2016). The wiki-2 dataset has a vocabulary size of

33278 words, and it consists of 2 million training words, 217k validation

words, and 245k test words. These words have been extracted from the set

of verified good and featured articles on Wikipedia6. The wiki-2 preprocess

replaced out of vocabulary words also with <unk> tokens. All the punctua-

tion marks, numbers, and most of the special characters are left in the text,

and hence, it is seen as a more realistic real-life dataset compared to PTB.
3http://www.fit.vutbr.cz/∼imikolov/rnnlm/simple-examples.tgz
4https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
5http://nlpprogress.com/english/language_modeling.html
6https://www.salesforce.com/products/einstein/ai-research/the-wikitext-
dependency-language-modeling-dataset/

39

Experimental setup

5.4 Model architecture

The experiment is executed in three different NNLM toolkits (MatsuLM,

awd-lstm-lm, and TheanoLM) using the same architecture in each of them.

This same architecture is used when training both of the training datasets

(PTB and wiki-2).

The model architecture has one lstm layer similar to the one described

in sections 3.4. Each of the words in the vocabulary were be transformed

into a 100-number long vector that were randomly initialized. The output

layer’s activation function is softmax.

5.5 Models and training details

The hidden states of the LSTM model will be 256 long vectors, and there

will not be dropouts anywhere. The initialization of all the weights and bi-

ases is zero, and the used optimizer is stochastic gradient descent. Each of

the training sequences will be 35 words long, and these training sequences

will be batched into 20 sequences per batch, and the learning rate of these

batches is set to 1. The gradients have been set max and min values of 5

and -5. Therefore, gradient values will be clipped if they are under -5 or

over 5.

Summary of the models training details

parameters : {

" model " : {

" num_layers " : 1 , # number of layers

" embed_size " : 100 , # word vector embedding s ize

" hidden_size " : 256 , # hidden state s ize (inside LSTM)

" i n i t _ s c a l e " : 0 , # i n i t i a l weight scal ing

" dropout " : 0 , # dropout

" in i t _b ias " : 0 , # i n i t i a l bias

" forget_b ias " : 0 , # i n i t i a l forget bias

" vocab_size " : 33278 # vocabulary s ize

} ,

" cuda " : true , # running on GPU

" optimizer " : " sgd " , # optimizer : s tochast i c gradient descent

"num_epochs " : 20 , # number of epochs

" l r " : 1 , # learning rate

" seq_length " : 35 , # sequence length

40

Experimental setup

" batch_size " : 20 , # batch s ize

" clip_norm " : 5 # max and −min gradient (c l ipping value)

}

The training was done on a Linux server with a GPU (Quadro P5000),

including 16 gigabytes of memory. Each model was separately trained so

that they had the full GPU at their disposal.

41

6. Results from experiment

Each dataset was trained with every toolkit for 20 epochs. That is the epoch

count, where the training time of each toolkit was measured. MatsuLM

and awd-lstm-lm were also trained for a second round with 40 epochs to

make sure that they performed as expected with higher epoch counts, and

to see if there were any differences in the toolkits. TheanoLM was not

trained for 40 epochs due to its painfully slow performance and a feature or

a bug that blocked it going over a particular epoch. This blocking happened

because the perplexity improvement became too small, and TheanoLM

tried to rerun the same epoch with different learning rates, which led to

looping indefinitely.

The figures 6.1 and 6.2 show the variation of perplexity in each epoch for

every toolkit. Table 6.1 lists the training time over 20 and 40 epochs of

each of the NNLM toolkits with both of the datasets.

Epochs / Dataset MatsuLM awd-lstm-lm TheanoLM
20 / PTB 0h 2m 47s 0h 4m 5s 0h 44m 48s
40 / PTB 0h 5m 30s 0h 7m 44s
20 / Wiki-2 0h 15m 13s 0h 21m 53s 4h 51m 48s
40 / Wiki-2 0h 30m 14s 0h 43m 2s

Table 6.1. The amount of time required by each toolkit for running 20 and 40 epochs of
training

Table 6.2 is also listing the test set perplexities after each of the toolkits

have trained the LSTM model.

Epochs / Dataset MatsuLM awd-lstm-lm TheanoLM
20 / PTB 150.46 148.43 155.45
40 / PTB 144.04 140.94
20 / Wiki-2 188.19 179.35 320.83
40 / Wiki-2 177.82 168.99

Table 6.2. Test set perplexity

Based on the experiments and the subjective experience that the au-

42

Results from experiment

Figure 6.1. NNLM perplexities per epoch with Penn Treebank data - The same LSTM
structures in three different toolkits

Figure 6.2. NNLM perplexities per epoch with Wikitext-2 data - The same LSTM struc-
tures in three different toolkits

43

Results from experiment

thor got from working with each of the NNLM toolkits, it is evident that

TheanoLM has become outdated compared to MatsuLM and awd-lstm-lm.

TheanoLM proved to be the most poorly performing and complicated

toolkit in all aspects that this thesis experimented with. The similar

experience of the toolkit was confirmed also by another software developer

who had been using it for research. They mentioned that TheanoLM is

quite slow and that the installation is atypical because of the need for

installing particular versions of Python libraries Theano and libgpuarray.

Only with this particular setup the TheanoLM is able to get the access for

GPU.

However, even when accessing the GPU, the most important feature, time

used for training of the experimental language models was over 10 times

longer than with the newly presented NNLM tool. Some incompatibilities

with the new GPUs might be responsible for this slowness, for example,

with the efficient memory using and data loading to the GPU, or the

slowness may be due to some other unnecessary processes that TheanoLM

is performing in the background.

Other complications were setting up the toolkit on a Linux server with

a modern GPU. This set-up required manually downloading a specific

version, not the latest, of the TheanoLM toolkit and updating its library

dependencies to work with the GPU. Running the training had problems

because the toolkit started to rerun epochs with lower learning rates

when perplexity improvement dropped too low. However, this rerunning of

epochs was designed to improve the trained model automatically, so this

was an "intentional bug". There were also problems in getting the logging

for the training set perplexity, and hence, it was not included in the results

chart.

However, the TheanoLM toolkit includes many features and integrations

that were not tested in the thesis. Some of these features are unique

to TheanoLM and are not included in the other two toolkits. These fea-

tures and integrations make the TheanoLM toolkit attractive, but the

hindrances of using and learning to use it seem to outweigh this attrac-

tiveness. Moreover, when also taking into account that the Theano Python

library is no longer supported or developed, updating the toolkit is obvious

for the Department of Signal Processing and Acoustics at Aalto University.

Between MatsuLM and awd-lstm-lm, the difference in language model

training time was not as significant as with the TheanoLM toolkit. The

newly presented MatsuLM was about 25 percent faster than awd-lstm-lm

44

Results from experiment

when training the experimental language models. Moreover, the awd-lstm-

lm gave slightly lower PPL with the same model structure. This difference

in the PPLs might be caused by some internal initialization or automatic

optimization of the models within each toolkit or some slightly different

way of generating PPL. However, the difference was not significant, and the

models were seemingly following the same patters; hence, the differences

in PPLs do not seem to be relevant.

The awd-lstm-lm is built on top of the same Pytorch library as MatsuLM

but is not compatible with the latest Pytorch version, which might cause

some of the sluggishness. Moreover, awd-lstm-lm is also a more complex

and comprehensive NNLM toolkit compared to MatsuLM, and may be

running some background processes that were unnecessary for the experi-

ments conducted in this thesis.This may also be a logical explanation for

the sluggishness of awd-lstm-lm encountered during the experiments.

To summarize this discussion, it can be clearly proven that TheanoLM

is the most poorly performing NNLM toolkit, and the newly presented

MatsuLM is the most well-performing NNLM toolkit according to the

experiments of this thesis. However, MatsuLM is not as extensive as

TheanoLM or awd-lstm-lm, nor is it yet as well documented or tested as

the other two toolkits. Furthermore, it also does not yet offer a wide range

of already implemented algorithms and optimization techniques, as the

other two existing toolkits do. This lack of complexity, nonetheless, can

also be an advantage when developers or researchers wish to implement

something on their own. The purpose of this thesis was not to build an

all-inclusive NNLM toolkit but rather a strong foundation for it so that the

Aalto University’s department or the open-source community can use and

develop it further.

45

7. Conclusion

This thesis focused on making NNLM research faster and easier with a

newly presented NNLM toolkit. As a theoretical contribution, this thesis

started by investigating the background of language modeling and the

hindrances that it faces. To fully understand these, it was also necessary

to review the development and working principles of classical and NNLMs.

Hence, the thesis examined the related literature and summarized some of

the latest achievements and some of the most promising language model

structures.

Furthermore, we surveyed the literature and open-source tools for cre-

ating NNLMs, to find out what kind of helpful and modern instruments

are available. Based on this survey, we found a handful of NNLM toolkits

that served these needs. Still, we found out that each of them had issues

relating to the outdated and deprecated software or because the tools were

not yet appropriately tested and hence, not ready for broader adoption.

This thesis presented a practical contribution to the lack of updated and

simple NNLM toolkits by creating MatsuLM, an open-source toolkit for

neural network language modeling. It is a modular and straightforward

toolkit that makes it easy to modify and continue development as an

open-source project.

The comparison experiments that were done for the MatsuLM and ex-

isting toolkits had limitations. For example, the data sizes used for these

experiments are reasonably small. Hence, we cannot confirm how Mat-

suLM would perform compared to other existing toolkits when there would

be larger training data sizes. However, the comparison results of the

smaller datasets indicate them to some extend. Also, the NNLM architec-

tures used for the comparison were simple, which might affect each of the

NNLM toolkits’ performance in different unexpected ways.

The experiments indicated that this new MatsuLM toolkit outperforms

46

Conclusion

existing NNLM toolkits with the training speed while performing with

similar accuracy. These features will help to speed up the research and

development of NNLMs.

47

8. Future work

The drawbacks of MatsuLM are that it is only a small tool and does not

yet have comprehensive testing in place, there is still a limited amount

of implemented algorithms, and only a few integrations build for it. Also,

the amount of documentation and example code is more limited than in

the existing tools that have been used in a variety of project settings.

MatsuLM’s comparisons to other existing tools are also limited due to the

limited time available for this master’s thesis. Hence, after adding more

algorithms to the MatsuLM, it would be essential to run comparisons to

see if it is still training faster than the other NNLM tools.

Hence, the MatsuLM toolkit’s future work includes testing with bigger

datasets (e.g., Google billion word LM benchmark), more complex NNLM

structures (e.g., GRU and transformer models), and building an integration

to use existing word embedding models like Glove and Word2vec. Other

future work with the toolkit includes adding support for subwords and the

ability to rescore n-best lists (as in TheanoLM).

Another important point for future work is to follow the development of

one prominent new NNLM toolkit, called tf-lm, that was not included in

this master’s thesis. This tf-lm toolkit was still under development during

the time that this thesis work was ongoing, and hence the comparisons

with it were blocked.

48

Bibliography

Adel, Heike, Katrin Kirchhoff, et al. (2014). “Comparing approaches to

convert recurrent neural networks into backoff language models for

efficient decoding”. In: Fifteenth Annual Conference of the International

Speech Communication Association.

Adel, Heike, Ngoc Thang Vu, et al. (2013). “Recurrent neural network lan-

guage modeling for code switching conversational speech”. In: 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing.

IEEE, pp. 8411–8415.

Arisoy, Ebru et al. (2012). “Deep neural network language models”. In:

Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really

Replace the N-gram Model? On the Future of Language Modeling for

HLT, pp. 20–28.

Bengio, Yoshua, Réjean Ducharme, et al. (2003). “A neural probabilistic lan-

guage model”. In: Journal of machine learning research 3.Feb, pp. 1137–

1155.

Bengio, Yoshua, Paolo Frasconi, and Patrice Simard (1993). “The problem

of learning long-term dependencies in recurrent networks”. In: IEEE

international conference on neural networks. IEEE, pp. 1183–1188.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning

long-term dependencies with gradient descent is difficult”. In: IEEE

transactions on neural networks 5.2, pp. 157–166.

Bengio, Yoshua, Jean-Sébastien Senécal, et al. (2003). “Quick training of

probabilistic neural nets by importance sampling.” In: AISTATS, pp. 1–9.

Bergstra, James S et al. (2011). “Algorithms for hyper-parameter optimiza-

tion”. In: Advances in neural information processing systems, pp. 2546–

2554.

Bojanowski, Piotr, Armand Joulin, and Tomas Mikolov (2015). “Alternative

structures for character-level RNNs”. In: arXiv preprint arXiv:1511.06303.

49

BIBLIOGRAPHY

Brébisson, Alexandre de and Pascal Vincent (2015). “An exploration of

softmax alternatives belonging to the spherical loss family”. In: arXiv

preprint arXiv:1511.05042.

Brown, Peter F et al. (1992). “Class-based n-gram models of natural lan-

guage”. In: Computational linguistics 18.4, pp. 467–480.

Carbune, Victor et al. (2020). “Fast multi-language lstm-based online hand-

writing recognition”. In: International Journal on Document Analysis

and Recognition (IJDAR), pp. 1–14.

Chelba, Ciprian et al. (2013). “One billion word benchmark for mea-

suring progress in statistical language modeling”. In: arXiv preprint

arXiv:1312.3005. URL: https://arxiv.org/pdf/1312.3005.pdf.

Chen, X. et al. (2014). “Efficient GPU-based training of recurrent neural

network language models using spliced sentence bunch”. In: INTERSPEECH-

2014, pp. 641–645. URL: https://www.isca-speech.org/archive/interspeech_

2014/i14_0641.html.

Colic, Aleksandar, Hari Kalva, and Borko Furht (2010). “Exploring NVIDIA-

CUDA for Video Coding”. In: Proceedings of the First Annual ACM

SIGMM Conference on Multimedia Systems. MMSys ’10. Phoenix, Ari-

zona, USA: Association for Computing Machinery, pp. 13–22. ISBN:

9781605589145. DOI: 10.1145/1730836.1730839. URL: https://doi.org/

10.1145/1730836.1730839.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional trans-

formers for language understanding”. In: arXiv preprint arXiv:1810.04805.

URL: https://arxiv.org/pdf/1810.04805.pdf.

Enarvi, Seppo and Mikko Kurimo (2016). “Theanolm-an extensible toolkit

for neural network language modeling”. In: arXiv preprint arXiv:1605.00942.

Enarvi, Seppo, Peter Smit, et al. (2017). “Automatic speech recognition

with very large conversational finnish and estonian vocabularies”. In:

IEEE/ACM Transactions on Audio, Speech, and Language Processing

25.11, pp. 2085–2097.

Falkner, Stefan, Aaron Klein, and Frank Hutter (2018). “BOHB: Robust

and efficient hyperparameter optimization at scale”. In: arXiv preprint

arXiv:1807.01774.

Fan, Yin et al. (2016). “Video-based emotion recognition using CNN-RNN

and C3D hybrid networks”. In: Proceedings of the 18th ACM International

Conference on Multimodal Interaction, pp. 445–450.

50

https://arxiv.org/pdf/1312.3005.pdf
https://www.isca-speech.org/archive/interspeech_2014/i14_0641.html
https://www.isca-speech.org/archive/interspeech_2014/i14_0641.html
https://doi.org/10.1145/1730836.1730839
https://doi.org/10.1145/1730836.1730839
https://doi.org/10.1145/1730836.1730839
https://arxiv.org/pdf/1810.04805.pdf

BIBLIOGRAPHY

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition unaffected by

shift in position”. In: Biological cybernetics 36.4, pp. 193–202.

Géron, Aurélien (2019). Hands-On Machine Learning with Scikit-Learn,

Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelli-

gent Systems. O’Reilly Media.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning.

MIT press.

Goodman, T Joshua (2001). “A bit of progress in language modeling ex-

tended version”. In: Machine Learning and Applied Statistics Group

Microsoft Research. Technical Report, MSR-TR-2001-72. URL: https://

arxiv.org/pdf/cs/0108005.pdf.

Graves, Alex (2013). “Generating sequences with recurrent neural net-

works”. In: arXiv preprint arXiv:1308.0850.

Graves, Alex and Navdeep Jaitly (2014). “Towards end-to-end speech recog-

nition with recurrent neural networks”. In: International conference on

machine learning, pp. 1764–1772.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech

recognition with deep recurrent neural networks”. In: 2013 IEEE inter-

national conference on acoustics, speech and signal processing. IEEE,

pp. 6645–6649.

Graves, Alex and Jürgen Schmidhuber (2009). “Offline handwriting recog-

nition with multidimensional recurrent neural networks”. In: Advances

in neural information processing systems, pp. 545–552.

Gutmann, Michael and Aapo Hyvärinen (2010). “Noise-contrastive esti-

mation: A new estimation principle for unnormalized statistical models”.

In: Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pp. 297–304.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term mem-

ory”. In: Neural computation 9.8, pp. 1735–1780.

Jozefowicz, Rafal et al. (2016). “Exploring the limits of language modeling”.

In: arXiv preprint arXiv:1602.02410.

Jurafsky, Dan and James H Martin (2014). Speech and language processing.

Vol. 3.

Kannan, Anjuli et al. (2016). “Smart reply: Automated response suggestion

for email”. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 955–964.

51

https://arxiv.org/pdf/cs/0108005.pdf
https://arxiv.org/pdf/cs/0108005.pdf

BIBLIOGRAPHY

Keselj, Vlado (2019). Speech and Language Processing Daniel Jurafsky

and James H. Martin.

Kneser, Reinhard and Hermann Ney (1995). “Improved backing-off for m-

gram language modeling”. In: 1995 International Conference on Acoustics,

Speech, and Signal Processing. Vol. 1. IEEE, pp. 181–184.

Krause, Ben et al. (2019). “Dynamic evaluation of transformer language

models”. In: arXiv preprint arXiv:1904.08378.

Kurimo, Mikko et al. (2006). “Unlimited vocabulary speech recognition

for agglutinative languages”. In: Proceedings of the main conference on

Human Language Technology Conference of the North American Chapter

of the Association of Computational Linguistics. Association for Compu-

tational Linguistics, pp. 487–494.

Lankinen, Matti (2016). “Modeling Finnish language with character-word

compositional Language Model”. MA thesis. Aalto University.

LeCun, Yann et al. (1999). “Object recognition with gradient-based learn-

ing”. In: Shape, contour and grouping in computer vision. Springer,

pp. 319–345.

Lin, Tsungnan et al. (1996). “Learning long-term dependencies in NARX

recurrent neural networks”. In: IEEE Transactions on Neural Networks

7.6, pp. 1329–1338.

Liu, Chuanhe et al. (2018). “Multi-feature based emotion recognition for

video clips”. In: Proceedings of the 20th ACM International Conference on

Multimodal Interaction, pp. 630–634.

Merity, Stephen, Nitish Shirish Keskar, and Richard Socher (2017). “Reg-

ularizing and optimizing LSTM language models”. In: arXiv preprint

arXiv:1708.02182.

– (2018). “An Analysis of Neural Language Modeling at Multiple Scales”.

In: arXiv preprint arXiv:1803.08240.

Merity, Stephen, Caiming Xiong, et al. (2016). “Pointer sentinel mixture

models”. In: arXiv preprint arXiv:1609.07843.

Mikolov, Tomáš (2012). “Statistical language models based on neural net-

works”. In: Presentation at Google, Mountain View, 2nd April 80.

Mikolov, Tomáš, Martin Karafiát, et al. (2010). “Recurrent neural network

based language model”. In: Eleventh annual conference of the interna-

tional speech communication association, pp. 1045–1048. URL: https:

//www.isca-speech.org/archive/interspeech_2010/i10_1045.html.

Mikolov, Tomáš, Stefan Kombrink, et al. (2011). “Extensions of recurrent

neural network language model”. In: 2011 IEEE international conference

52

https://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
https://www.isca-speech.org/archive/interspeech_2010/i10_1045.html

BIBLIOGRAPHY

on acoustics, speech and signal processing (ICASSP). IEEE, pp. 5528–

5531.

Mikolov, Tomas et al. (2013). “Efficient estimation of word representations

in vector space”. In: arXiv preprint arXiv:1301.3781.

Mnih, Andriy and Koray Kavukcuoglu (2013). “Learning word embeddings

efficiently with noise-contrastive estimation”. In: Advances in neural

information processing systems, pp. 2265–2273.

Morin, Frederic and Yoshua Bengio (2005). “Hierarchical probabilistic

neural network language model.” In: Aistats. Vol. 5. Citeseer, pp. 246–

252.

Olah, Christopher (2015). Understanding LSTM Networks. URL: http :

//colah.github.io/posts/2015-08-Understanding-LSTMs/.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014).

“Glove: Global vectors for word representation”. In: Proceedings of the

2014 conference on empirical methods in natural language processing

(EMNLP), pp. 1532–1543.

Popkes, Anna-Lena (2018). “Language Modeling with Recurrent Neural

Networks - Using Transfer Learning to Perform Radiological Sentence

Completion”. MA thesis. Rheinische Friedrich-Wilhelms-Universität Bonn.

URL: http://alpopkes.com/files/thesis_APopkes.pdf.

Radford, Alec et al. (2019). “Language models are unsupervised multitask

learners”. In: OpenAI Blog 1.8, p. 9. URL: https://cdn.openai.com/better-

language-models/language_models_are_unsupervised_multitask_learners.pdf.

Rong, Xin (2014). “word2vec parameter learning explained”. In: arXiv

preprint arXiv:1411.2738.

Rosenfeld, Ronald (2000). “Two decades of statistical language modeling:

Where do we go from here?” In: Proceedings of the IEEE 88.8, pp. 1270–

1278.

Ruder, Sebastian (2020). Language Modeling | NLP-progress. URL: http:

//nlpprogress.com/english/language_modeling.html (visited on 05/23/2020).

Sak, Hasim, Andrew W Senior, and Françoise Beaufays (2014). “Long

short-term memory recurrent neural network architectures for large

scale acoustic modeling”. In:

Smit, Peter et al. (2017). “Aalto system for the 2017 Arabic multi-genre

broadcast challenge”. In: 2017 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU). IEEE, pp. 338–345.

53

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://alpopkes.com/files/thesis_APopkes.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://nlpprogress.com/english/language_modeling.html
http://nlpprogress.com/english/language_modeling.html

BIBLIOGRAPHY

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence

learning with neural networks”. In: Advances in neural information

processing systems, pp. 3104–3112.

Ullah, Amin et al. (2017). “Action recognition in video sequences using deep

bi-directional LSTM with CNN features”. In: IEEE Access 6, pp. 1155–

1166.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in

neural information processing systems, pp. 5998–6008.

Verwimp, Lyan, H Van Hamme, and Patrick Wambacq (2019). “TF-LM:

Tensorflow-based language modeling toolkit”. In: LREC 2018-11th Inter-

national Conference on Language Resources and Evaluation. Proceedings

LREC, pp. 2968–2973.

Verwimp, Lyan, Joris Pelemans, Patrick Wambacq, et al. (2017). “Character-

word lstm language models”. In: arXiv preprint arXiv:1704.02813.

Yang, Zhilin et al. (2017). “Breaking the softmax bottleneck: A high-rank

RNN language model”. In: arXiv preprint arXiv:1711.03953.

You, Yang et al. (2019). “Large batch optimization for deep learning: Train-

ing bert in 76 minutes”. In: International Conference on Learning Repre-

sentations. URL: https://arxiv.org/abs/1904.00962.

54

https://arxiv.org/abs/1904.00962

	Abstract
	Tiivistelmä
	Contents
	Abbreviations
	Introduction
	Motivation
	Objectives and research question
	Outline of the thesis

	Language models
	Need for language models
	Accelerating communication
	Human-computer interaction

	Classic language models
	Statistical Language Modeling
	N-Gram Models

	Neural Network Language Modeling
	Artificial and Biological Neurons
	Feedforward neural networks
	Recurrent Neural Networks
	Limitations

	Long Short-Term Memory (LSTM)
	LSTM structure

	Evaluating Language Models
	Perplexity

	Lexical unit selection for NNLM
	Word-based models
	Sub-word based models
	Character-based models

	MatsuLM
	Toolkit description
	Adding new functionalities

	Experimental setup
	TheanoLM
	awd-lstm-lm (by Salesforce)
	Datasets and preprocessing
	Model architecture
	Models and training details

	Results from experiment
	Conclusion
	Future work
	Bibliography

